Electromagnetic Field Theory and Computation
ISBN: 9780470874257
Platform/Publisher: WOL / Wiley-IEEE Press
Digital rights: Users: Unlimited; Printing: Unlimited; Download: Unlimited
Subjects: Physical Sciences & Engineering; Electrical & Electronics Engineering;

This book is intended to serve as a textbook for an entry level graduate course on electromagnetics (first seven chapters) and for an advanced level graduate course on computational electromagnetics (last five chapters). Whereas there are several textbooks available for the graduate electromagnetics course, no textbook is available for the advanced course on computational electromagnetics. This book is intended to fill this void and present electromagnetic theory in a systematic manner so that students can advance from the first course to the second without much difficulty. Even though the first part of the book covers the standard basic electromagnetic theory, the coverage is different from that in existing textbooks. This is mainly the result of the undergraduate curriculum reform that occurred during the past two decades. Many universities reduced the number of required courses in order to give students more freedom to design their own portfolio. As a result, only one electromagnetics course is required for undergraduate students in most electrical engineering departments in the country. New graduate students come to take the graduate electromagnetics course with a significant difference in their knowledge of basic electromagnetic theory. To meet the challenge to benefit all students of backgrounds, this book covers both fundamental theories, such as vector analysis, Maxwell's equations and boundary conditions, and transmission line theory, and advanced topics, such as wave transformation, addition theorems, and scattering by a layered sphere.


Jian-ming Jin , PhD, is Y. T. Lo Chair Professor in Electrical and Computer Engineering and Director of the Electromagnetics Laboratory and Center for Computational Electromagnetics at the University of Illinois at Urbana-Champaign. He authored The Finite Element Method in Electromagnetics (Wiley) and Electromagnetic Analysis and Design in Magnetic Resonance Imaging ; coauthored Computation of Special Functions (Wiley) and Finite Element Analysis of Antennas and Arrays (Wiley); and coedited Fast and Efficient Algorithms in Computational Electromagnetics . A Fellow of IEEE, he is listed by ISI as among the world's most cited authors.
hidden image for function call