Auto-Segmentation for Radiation Oncology: State of the Art
ISBN: 9780429323782
Platform/Publisher: Taylor & Francis / CRC Press
Digital rights: Users: Unlimited; Printing: Unlimited; Download: Unlimited
Subjects: Medicine Dentistry Nursing & Allied Health; Physical Sciences; Medicine; Physics; Oncology; Radiology; Medical Physics;

This book provides a comprehensive introduction to current state-of-the-art auto-segmentation approaches used in radiation oncology for auto-delineation of organs-of-risk for thoracic radiation treatment planning. Containing the latest, cutting edge technologies and treatments, it explores deep-learning methods, multi-atlas-based methods, and model-based methods that are currently being developed for clinical radiation oncology applications. Each chapter focuses on a specific aspect of algorithm choices and discusses the impact of the different algorithm modules to the algorithm performance as well as the implementation issues for clinical use (including data curation challenges and auto-contour evaluations).

This book is an ideal guide for radiation oncology centers looking to learn more about potential auto-segmentation tools for their clinic in addition to medical physicists commissioning auto-segmentation for clinical use.

Features:

Up-to-date with the latest technologies in the field Edited by leading authorities in the area, with chapter contributions from subject area specialists All approaches presented in this book are validated using a standard benchmark dataset established by the Thoracic Auto-segmentation Challenge held as an event of the 2017 Annual Meeting of American Association of Physicists in Medicine

Jinzhong Yang earned his BS and MS degrees in Electrical Engineering from the University of

Science and Technology of China, in 1998 and 2001, and his PhD degree in Electrical Engineering

from Lehigh University in 2006. In July 2008, Dr Yang joined the University of Texas MD Anderson

Cancer Center as a Senior Computational Scientist, and since January 2015 he has been an Assistant

Professor of Radiation Physics. Dr Yang is a board-certified medical physicist. His research interest

focuses on deformable image registration and image segmentation for radiation treatment planning

and image-guided adaptive radiotherapy, radiomics for radiation treatment outcome modeling and

prediction, and novel imaging methodologies and applications in radiotherapy.

Greg Sharp earned a PhD in Computer Science and Engineering from the University of Michigan

and is currently Associate Professor in Radiation Oncology at Massachusetts General Hospital

and Harvard Medical School. His primary research interests are in medical image processing and

image-guided radiation therapy, where he is active in the open source software community.

Mark Gooding earned his MEng in Engineering Science in 2000 and DPhil in Medical Imaging

in 2004, both from the University of Oxford. He was employed as a postdoctoral researcher both

in university and hospital settings, where his focus was largely around the use of 3D ultrasound

segmentation in women's health. In 2009, he joined Mirada Medical Ltd, motivated by a desire to

see technical innovation translated into clinical practice. While there, he has worked on a broad

spectrum of clinical applications, developing algorithms and products for both diagnostic and therapeutic

purposes. If given a free choice of research topic, his passion is for improving image segmentation,

but in practice he is keen to address any technical challenge. Dr Gooding now leads the

research team at Mirada, where in addition to the commercial work he continues to collaborate both

clinically and academically.

hidden image for function call